Some inequalities about connected domination number
نویسندگان
چکیده
منابع مشابه
Inequalities Involving Independence Domination , / - Domination , Connected and Total / - Domination Numbers
Let / be an integer-valued function defined on the vertex set V(G) of a graph G. A subset D of V(G) is an /-dominating set if each vertex x outside D is adjacent to at least f(x) vertices in D. The minimum number of vertices in an /-dominating set is denned to be the /-domination number, denoted by 7/(G). In a similar way one can define the connected and total /-domination numbers 7 C| /(G) and...
متن کاملconnected cototal domination number of a graph
a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the min...
متن کاملTriple Connected Domination Number of a Graph
The concept of triple connected graphs with real life application was introduced in [7] by considering the existence of a path containing any three vertices of a graph G. In this paper, we introduce a new domination parameter, called Smarandachely triple connected domination number of a graph. A subset S of V of a nontrivial graph G is said to be Smarandachely triple connected dominating set, i...
متن کاملConnected Cototal Domination Number of a Graph
A dominating setD ⊆ V of a graphG = (V,E) is said to be a connected cototal dominating set if 〈D〉 is connected and 〈V −D〉 6= ∅, contains no isolated vertices. A connected cototal dominating set is said to be minimal if no proper subset of D is connected cototal dominating set. The connected cototal domination number γccl(G) of G is the minimum cardinality of a minimal connected cototal dominati...
متن کاملThe edge domination number of connected graphs
A subset X of edges in a graph G is called an edge dominating set of G if every edge not in X is adjacent to some edge in X. The edge domination number γ′(G) of G is the minimum cardinality taken over all edge dominating sets of G. Let m,n and k be positive integers with n − 1 ≤ m ≤ (n 2 ) , G(m,n) be the set of all non-isomorphic connected graphs of order n and size m, and G(m,n; k) = {G ∈ G(m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1996
ISSN: 0012-365X
DOI: 10.1016/0012-365x(95)00088-e